Lazy Data Routing and Greedy Scheduling for
Application-Specific Signal Processors
(The Long Version)

Ken Rimey and Paul N. Hilfinger

Computer Science Division
University of California
Berkeley, CA 94720

Abstract

Generating efficient horizontal code is difficult when
intermediate results must be routed through an ir-
regular network of functional units and pipeline reg-
isters. A compiler should do the routing on the fly
as the code is scheduled. However, scheduling code
in the presence of as-yet unrouted intermediate re-
sults is tricky because it is easy to unwittingly close
off all feasible routes for one of them. We describe a
network-flow algorithm that tests for this situation.
We have built a compiler that uses this technique.
It is part of an experimental development system for
application-specific signal processing chips.

1 Introduction

This paper describes a way to generate efficient code
for certain horizontal-instruction-word architectures
that have resisted previous attack. These architec-
tures afford some opportunity for pipelining and for
parallel operation of functional units, but rather than
provide enough bandwidth to store intermediate re-
sults in memory or in a register file, they provide
feedbacks in the pipeline and chaining of the func-
tional units. This leaves the compiler with the diffi-
cult task of orchestrating the operation of the func-
tional units and choreographing the movement of in-
termediate results through the network of functional
units and pipeline registers. The task is greatly sim-
plified by the assumption that encoding of instruction
words is minimal and makes few or no constraints on
the operation of the datapath.

Allen [1] provides a good survey of architectural
issues in digital signal processing (DSP). The sig-
nal processing architectures considered in this paper
resemble the microengines used to implement many
general-purpose computers, but are one-level, not
two-level, machines. The techniques described here
might be applied to microengines, but that is beyond

the scope of this paper.

1.1 Local Scheduling

The usual approach for generating horizontal code
is to first generate a loose sequence of microopera-
tions (vertical code) and then pack these microoper-
ations tightly into a small number of instructions in
a compaction post-pass. Compaction of one straight-
line code segment at a time is local compaction [2],
while compaction of a program flow graph—moving
microoperations across forks and joins—is global com-
paction [4]. Local compaction is now well-understood;
the research community has largely shifted its atten-
tion to global compaction.

However, for datapaths dominated by feedbacks
and chaining, packing microoperations in a separate
post-pass works poorly and generating good horizon-
tal code for even straight-line code segments presents
a challenge, as Vegdahl has observed [7]. Not only
must the code generator choose which functional
units to use; it must also choose how to route each
intermediate result from the output of one functional
unit to the input of another, optionally storing it in
a register file in the meantime. This task is called
data routing. How best to route a particular value
depends on the time interval between its definition
and use or uses, as well as on the datapath resources
that are free during that interval. For this reason we
abandon the compaction post-pass, and instead pack
or schedule microoperations as they are generated. In
this paper, we consider only local scheduling.

Our local scheduler is similar to the “operation
scheduler” developed by Fisher et al. [3] for use in
a trace-scheduling compiler for a VLIW supercom-
puter. Our work differs in that we consider machines
in which intermediate results must often reside in hot
spots such as busses, nodes that store data for only
one instruction cycle, and registers that would ob-
struct computation if tied up. Like Fisher et al., we
choose the route for each intermediate result lazily,

Page 1

i.e., when a use is scheduled (which may be long after
the definition was scheduled). The presence of hot
spots complicates lazy data routing by introducing
the possibility that all feasible routes for some as-yet
unrouted intermediate result will be closed off unwit-
tingly by an unfortunate scheduling decision. Rather
than backtrack, we watch for and avoid this situation.

1.2 Application-Specific Processors

Digital signal processing systems are often imple-
mented as application-specific integrated circuits
(ASIC’s) to reduce their cost and size. If the required
sample rate is not too high, such ASIC’s may incor-
porate programmable processors. These application-
specific processors need to be as small as possible,
while just fast enough to achieve the sample rate.
An easily-modifiable processor design is important for
taking advantage of the opportunity to tune each pro-
cessor to suit the program that it will run.

We have constructed a compiler [6] that translates
a subset of C into horizontal code for a family of
application-specific processors developed by Broder-
sen, Rabaey, and others of the Lager project at Berke-
ley [5]. The compiler is being used in two ongoing
DSP research projects: a geometry engine for robot-
arm inverse kinematics and an adaptive filter for mo-
bile radio.

The compiler must meet conflicting goals. On the
one hand, it should be easy to retarget. The user
should be able to evaluate a change in processor de-
sign by retargeting the compiler and then recompiling
the signal processing program. On the other hand,
the resulting, irregular processor architectures are dif-
ficult ones for which to generate code.

1.3 Organization of this Paper

The purpose of this paper is to describe the design
that we have chosen for the compiler’s back end in
seeking to meet these goals. Section 2 illustrates the
operation of the scheduler with the aid of a simple ex-
ample. Section 3 describes the search algorithm for
routing intermediate results. Section 4 describes the
method for avoiding decisions that make data rout-
ing impossible. Finally, Section 5 introduces some
practical facilities needed to cope with real-life archi-
tectures.

2 Greedy Scheduling

Greedy scheduling is scheduling without backtrack-
ing. This section illustrates the procedure with a sim-
ple example: using the toy datapath of Figure 1 to

shift

add

rbus

in acc

out

Figure 1: A toy datapath.

compute a simple recurrence.

The datapath has two functional units: an adder,
and a barrel shifter that performs a signed right-shift
by zero, one, or two bits. I/O is provided to and
from the accumulator acc. There are four registers
in all: acc, regl, reg2, and stage. Data written
into any of these cannot be read until the next in-
struction; they effectively divide the datapath into
pipeline stages. The stage register cannot retain
data because each successive instruction overwrites
its contents. With the understanding that instruc-
tions are horizontal and minimally encoded, we have
now completely defined the architecture.

The recurrence to be computed implements a low-

pass filter:
1

3
Yn = Zyn—l + Z-'L'n

Successive inputs and outputs are denoted z,, and
yn, respectively (n = 0,1,2,...). The corresponding
program is an infinite loop whose body, written in C,
is

out(y = (y>>1) + (y>>2) + (Ain()>>2));

Let us assume that y will be stored in regl.

2.1 Inputs to the Scheduler
The scheduler’s task is to take

e a DAG (directed acyclic graph) representing a
straight-line code segment and

e a machine description for the datapath

and build a schedule, a fragment of code.

Page 2

Figure 2: The sample DAG.

2.1.1 The DAG

Figure 2 shows the DAG for the body of the loop.
The nodes of the DAG represent operations, while the
edges and forks represent wvalues. The edges define
data dependencies, which constrain the sequence in
which operations may be scheduled. Operations that
interact with state may additionally be subject to
side-effect dependencies; for example, there are read-
write dependencies here between node 1 and node 9
and between node 3 and node 9. These read-write
dependencies happen to be redundant with the data
dependencies and are not shown.

The numbering of the nodes in the figure defines
a total order consistent with all dependencies. We
will use this as a priority order to guide the sched-
uler. This particular ordering was derived from the
source program, which is not a bad choice in practice,
although there are other possibilities.

2.1.2 The Machine Description

A machine description consists mainly of register dec-
larations and a list of supported microoperations,
written in register transfer notation.

Here is a microoperation supported by the toy dat-
apath:

acc = acc + stage

The effect of executing this in instruction n would be
to take the values in acc and stage at time n, add
them together, and leave the result in acc at time
n + 1.

Our convention is that a result computed in in-
struction n appears in its destination at time n + d,
where d is the delay associated with the destination.
In addition to the four unit-delay registers mentioned
earlier, one other destination is declared in the ma-
chine description for the toy datapath. This is rbus,

| name | delay | storage? |

regl 1 yes
reg2 1 yes
rbus 0 no
stage 1 no

acc 1 yes

Table 1: The registers and busses of the toy datapath.

which has zero delay, and like stage, does not provide
storage. The declarations are summarized in Table 1.

Microoperations can be divided into two groups:
function microoperations and transfer microopera-
tions. Function microoperations implement the op-
erations associated with nodes of the DAG. Transfer
microoperations just copy data from place to place
and are associated with data routing.

The machine description for the toy datapath lists
five register transfers representing function microop-
erations:

acc = acc + stage

acc = stage + acc

stage = rbus > N (N =1, 2)
acc = in()

out (acc)

The first two represent two different ways to use the
same microoperation to implement “+.”

The machine description also lists six transfer mi-
crooperations:

regl = acc
reg2 = acc
rbus = regl
rbus = reg?2
stage = rbus
acc = stage

These are supplemented by three transfer microoper-
ations implicitly defined by Table 1:

regl = regl
reg2 = reg?2
acc = acc

Actually, because the variable y has been as-
signed to regl, the microoperation “regi=acc” will
be treated as a function microoperation in gener-
ating code for this DAG. It will be used to imple-
ment the “write y” operation. The microoperation
“rbus=regl,” on the other hand, will be treated as
an ordinary transfer microoperation. This is because
the “read y” operation will not itself generate code.

Page 3

Figure 3: The place graph summary of transfer mi-
crooperations.

The transfer microoperations are summarized in
the directed graph of Figure 3. For lack of a bet-
ter term, we call the nodes of this graph places. Each
edge is labeled with the time needed by the corre-
sponding transfer microoperation. The edge from acc
to regl has been deleted to reflect the special treat-
ment of “regl=acc.”

2.2 The Scheduling Algorithm

Horizontal code does not have to be generated one
instruction at a time. Abstractly, the scheduler be-
gins with an infinite sequence of empty instructions,
inserts microoperations into these instructions, and
when it is finished, drops trailing empty instructions.

There are two levels to the algorithm. On the top
level, the nodes of the DAG are scheduled by a greedy
algorithm, with no backtracking. Under that, the de-
tails of scheduling a node are handled by a procedure
that does use backtracking.

2.2.1 Greedily scheduling the DAG

For each node N of the DAG, the scheduler must
find some time T at which N can be scheduled. The
basic scheduling transaction is to try a pair [N,T]. A
transaction may succeed or fail. The idea of greedy
scheduling is never to retract a successful one.

Thus greedy scheduling comes down to choosing
what pair to try next. The choice is from among un-
tried pairs, excluding all [N,T] such that either N
has been scheduled or some node on which it is de-
pendent has not. Say T3 < Ty and N; < N» (i.e.,
Nj is the same as Ny or precedes it in the prior-
ity order of Section 2.1.1). Then between [Ny,T1]
and [Na,T»], [N1,T}] is the natural one to try first.
Between [Ny, T5] and [Ny, T}], however, both choices

are workable. There are two basic variants of greedy
scheduling:

e Operation scheduling chooses [Ny, T].
o List scheduling chooses [Na, T1].

Of course, there is no need to try a pair [N, T] if a
node N’ on which N is dependent has been scheduled
at time 7" > T'. With this understanding we see that,
in list scheduling, the sequence of scheduled pairs is
ordered by time. In some applications this means that
list scheduling builds one instruction at a time. This
bonus is not obtained, however, when list scheduling
is used with lazy data routing. We use operation
scheduling in the example of Section 2.3.

2.2.2 Scheduling a DAG node

There may be several different function microopera-
tions that could be generated for a given DAG node.
Even in our toy datapath where there is only one of
each kind of functional unit, there are two ways to
add numbers: The first and second arguments could
be put in stage and acc respectively, or vice versa.
To schedule a node N at a time T', we just try all ap-
plicable register transfers in the order in which they
appear in the machine description.

We have thus reduced the problem to that of
scheduling, for a given time T, a register transfer of
the form

dest = f(srcl, src2, ., srcn)

This register transfer takes m argument values
V1,02, .. .,V, and produces a result value u. Schedul-
ing it involves the following steps:

1. Choose an input value v;, and deliver v; to srci;
that is, find a sequence of transfer microopera-
tions that propagate v; to srci at time T from
any place and time where it may be found.

2. Repeat Step 1 until all argument values have
been delivered.

3. Schedule the function microoperation itself at
time T. This involves checking for consistency
with side-effect dependencies and resource usage.

4. Record the presence of a new value u in dest at
time T 4 d, where d is the delay associated with
dest.

If any step is inconsistent with the current sched-
ule, the scheduling attempt fails; some other register
transfer or some other time must be tried.

Actually, a little more persistence is a good idea.
An unfortunate choice among ways of delivering one

Page 4

argument may preclude the delivery of another. We
find that, if delivery of an argument other than the
first fails, an effective heuristic is to start over, deliv-
ering that argument first.

2.3 Example

Here we show how code is generated for the DAG of
Figure 2. The first step is to note that the initial value
of the variable y is available in regl. For reference,
this will be value 1. We will give each value the same
number as the node that produces it, except for nodes
that (like nodes 1 and 3) produce preexisting values.

Scheduling node 1 of the DAG, “read y,” is easy;
we just look up the current value of y, value 1. This
becomes the output of node 1 and the input of node 2.
Node 2 is the operation “shift 1,” for which there is
the function microoperation “stage=rbus>>1.” We
successfully schedule this in the first instruction; de-
livering value 1 to rbus involves only the transfer mi-
crooperation “rbus=regl.” The output of node 2 ap-
pears in stage in time for the second instruction (i.e.,
at time 2).

After scheduling nodes 1 and 2, only the first in-
struction is non-empty:

rbus=regl, stage=rbus>>1;

Value 2 will be used by node 5, but other nodes are to
be scheduled first. Because stage will lose value 2 by
the third instruction, it may prove necessary to put
“acc=stage” in instruction 2. The idea of lazy data
routing is to postpone deciding whether to resort to
that. Scheduling will proceed with the understand-
ing that value 2 could, in principle, be copied into
acc, and from there into reg2. Such a hypothetical
sequence of transfer microoperations is called a spill
path, and is the topic of Section 4. No microoperation
that would obstruct a spill path is scheduled unless
an alternative path is available.

The second “read y” node yields value 1, as the first
did. A “shift 2” node computes value 4 from this.
Then a “+” node sums values 2 and 4 to produce
value 5. Here is the schedule at this point:

rbus=regl, stage=rbus>>1;
rbus=regl, stage=rbus>>2, acc=stage;
acc=acctstage;

Only value 5 still has a spill path, since that is the
only value with remaining uses.

Node 6, an “input” operation, can be inserted into
the first instruction; acc is free then, and a spill path
is available. Scheduling node 7 involves finding a
mult-step delivery path for value 6. Skipping ahead,
we reach the end result:

regl rbus reg2 stage acc

Figure 4: The place-time graph, truncated at T = 6.

rbus=regl, stage=rbus>>1, acc=in();
rbus=regl, stage=rbus>>2, acc=stage, reg2=acc;
acc=acc+stage, rbus=reg2, stage=rbus>>2;
acc=acc+tstage;

regl=acc, out(acc);

3 Lazy Data Routing

3.1 The Place-Time Graph

To facilitate the description and implementation of
data routing, we introduce the place-time graph. This
is a directed graph whose nodes are of the form [P, T']
where P is a place, a node of the place graph of Fig-
ure 3, and T € {1,2,...} is a time. Two place-time
nodes [Py, T1] and [P, T3] are connected by an edge
in the place-time graph if the place nodes P; and P»
are connected by an edge labeled T — T in the place
graph. Figure 4 shows the place-time graph derived
from the place graph of Figure 3.

The place-time node [P, T] is labeled by the value
v if v is available in P at time 7. Labels are at-
tached to nodes by two different mechanisms. First,
the scheduling of function microoperations introduces
newly computed values into the graph. Second, data
routing copies values from node to node along the
edges of the place-time graph. The labels shown in
Figure 4 are from the example.

Various causes may prevent the labeling of a given
node by a given value. The node may already have a
different label. The node may be mutually exclusive

Page 5

with a labeled node. (See Section 4.2.3.) Finally,
the node may lie on a spill path for which there is
no alternative route. We find it convenient perform
these tests as steps in labeling a node. Thus we say
that an attempt to label a node may fail.

3.2 The Data Routing Algorithm

Consider an attempt to deliver the value v to the
place-time node [P, T]. If [P, T] is already labeled by
v, there is nothing to be done. If it is labeled by some
other value, the delivery attempt fails. In the gen-
eral case, we seek a delivery path through the place-
time graph, and we label its nodes with v, implicitly
scheduling transfer microoperations corresponding to
its edges. A delivery path consists of a sequence of
distinct nodes @Q1,Qa, ..., Q, [n > 1] such that

1. @ is labeled by v,
2. @Q2,Q3,...,Q, are unlabeled, and
3. Q,=[P,T].

As mentioned in Section 3.1, whether an attempt to
label a place-time node fails can depend on the labels
of other nodes. This means that a search that visits
nodes only once may fail to find an existing path.
Nevertheless, we look for paths by using a depth-first
search rooted at [P,T]. Nodes are labeled with v
as the search goes forwards (following edges of the
place-time graph backwards) and unlabeled as it backs
up. The search terminates as soon as a node already
labeled by v is found. The penalty for using this
heuristic algorithm is occasional, unnecessary failure
that may cause an operation to be scheduled later
than necessary.

The order in which the depth-first search considers
the parents of a node is carefully chosen according to
estimates of the delivery cost of v. The estimate for a
given node is the cost of the cheapest unlabeled path
to that node from some node labeled by v, where the
cost of a path is the sum of heuristic costs assigned
to its nodes. A straightforward data-flow algorithm
can be used to calculate these estimates. (We find
it helpful to reuse still-valid estimates calculated in
previous delivery attempts.)

4 Spill Paths

A spill path for the value v is a delivery path to any
node of the form [P,T], where Tt is a time in the
distant future. A live value is one that labels one or
more place-time nodes and is an input to an as-yet
unscheduled operation. We now consider the task of

regl rbus reg2 stage acc

1 (1

Figure 5: Old (heavy) and new (lighter) spill paths
on introduction of value 4.

maintaining a set of disjoint spill paths, one for each
live value.

To illustrate, Figure 5 shows how the place-time
graph is updated in scheduling node 4 of the sample
DAG. This is a “shift 2” node that will generate the
function microoperation:

stage = rbus >> 2

The argument, value 1, has already been delivered to
rbus. Its spill path has been erased. Value 2, a by-
stander, has a spill path, shown as a heavy, curved ar-
row. We now label [stage, 3] with the result, value 4.
If that node had lain on a spill path, we would have
tried to reroute it. Finally, we give life to value 4 by
creating a spill path for it. The final spill paths are
shown in the figure as lighter, curved arrows. Notice
that the one for value 2 has moved.

4.1 The Spill Path Updating Algo-
rithm

To introduce a spill path for a new live value, or to
label a place-time node that lies on a spill path, it
might be necessary to adjust all existing spill paths.
If a way to do this exists, it can be found very quickly,
in a worst-case time linear in the size of the place-
time graph (truncated at T.,). This is accomplished
by transforming the problem of rearranging node-
disjoint paths in the place-time graph into a prob-
lem of rearranging edge-disjoint paths in a different
graph, a zero-one network (one whose edge capacities
are all one).

Page 6

Figure 6: Constructing a network from the place-time
graph.

The first step in the construction of the network
is to replace every node of the place-time graph by
a pair of nodes as shown in Figure 6. The pair con-
sists of an in-node and an out-node connected by an
internal edge. Next we delete internal edges that cor-
respond to labeled place-time nodes. Then, for each
live value, we create a source node, as well as edges
from this to the out-node of every place-time node
labeled by the value. Finally, we create a sink node
to which we link all T, out-nodes.

A set of spill paths is a set of edge-disjoint paths
through the network, one leading from each source
node to the sink node. It is also a network flow from
the sources to the sink, conserved at each node and
limited to one unit along each edge. Define an aug-
menting path to be an undirected path that traverses
free edges forwards and occupied edges backwards.
To augment a network flow along an undirected path
means to change the flow along each edge from zero to
one or vice versa. Augmenting a network flow along
an augmenting path preserves its correctness, except
that it causes one unit of flow to appear at the head
of the path and disappear at the tail.

This idea is used to update the network flow to
reflect the labeling of a node or the introduction of
a new live value. To illustrate the latter, Figure 7
shows a fragment of the network corresponding to the
place-time graph of Figure 5. The place-time node
[stage, 2] is labeled with value 2, whose spill path is
shown as a heavy, curved arrow. The place-time node
[stage, 3] is labeled with value 4, for which a spill
path is to be introduced. A source node for value 4
has been created and attached to the appropriate out-
node. An augmenting path from this source node to
the sink has been found and is shown as a lighter,
looping arrow. Augmenting the flow along this path
will result in the desired pair of spill paths.

On the other hand, say we want to label a node that
lies on a spill path. In other words, we want to delete
the corresponding internal edge in the network, but it
is occupied. The procedure is to delete it anyway and
then to seek an augmenting path from the in-node to
the out-node. If in searching for such an augmenting
path we stumble across one from the in-node to the
sink, we do well to use it and separately rip up the

Figure 7: An augmenting path (lighter arrow).

flow from the out-node.

Another useful kind of update changes T,. In
practice, giving T, a huge value wastes both time
and space. A better idea is to increase it dynami-
cally, maintaining a buffer zone between it and la-
beled nodes.

4.2 Using Spill Paths to Avoid Get-
ting Stuck

Constraining the labeling of nodes as required to
maintain a set of spill paths reduces the likelihood
of heading down a scheduling dead end. Preventing
it altogether requires a few refinements.

4.2.1 Delivery Revisited

A spill path facilitates the delivery of a value by pro-
viding a prefix for the delivery path. By keeping open
a path through the early, heavily-labeled part of the
place-time graph, one hopes to guarantee the exis-
tence of a delivery path to [P, T for all reasonable P
and some T'.

Unfortunately, an open but tortuous path might
go undiscovered by the heuristic depth-first search
described in Section 3.2. For this reason, we define
a second, reliable delivery algorithm that makes ex-
plicit use of the spill path of the value to be delivered.
The reliable algorithm uses the simple algorithm as a
subroutine; moreover, the first thing it does is try the
simple algorithm, which tends to find a more direct

Page 7

path when it does find a path. Here is the reliable
procedure for delivering the value v to the place-time
node [P, T7:

1. Try to deliver v to [P, T] using the simple algo-
rithm. If successful, return. If the cost estima-
tion performed by the simple algorithm proves
that no path exists, quit.

2. Make a list of the nodes on the spill path of v.
3. Attach the label v to each of these nodes.

4. Try again to deliver v to [P, T] using the simple
algorithm. If unsuccessful, quit (after reversing
Step 3).

5. Finally, remove useless labels that were attached
in Step 3.

4.2.2 Acceptable Place Graphs

Consider a value that has been put in register A and
will ultimately need to be delivered to registers B
and C. Say it is delivered to C first. Say that, when
the time arrives to deliver the value to B, its spill
path leads from register C' to D. If that spill path
is to guarantee an opportunity to deliver the value
to B, there had better be a path from D to B in
the place graph. This is a constraint imposed on the
place graph.

A place graph certainly meets the constraint if
there is a path from A to B whenever there is a path
from B to A, i.e., if the graph consists of disconnected
strongly-connected components. This condition can
be loosened slightly. For example, in a graph with two
strongly-connected components, an edge from one to
the other can be tolerated if the first component con-
tains no place node that appears on the right side of
a function microoperation, or if the second contains
no place node that appears on the left side of a func-
tion microoperation. In the latter case, we delete the
links in the network that go to the sink node from
out-nodes of the second component.

4.2.3 Mutually Exclusive Edges

If the place-time graph has groups of mutually ex-
clusive nodes, the corresponding network will have
groups of mutually exclusive edges. These must be
respected by spill paths that are to serve as reliable
prefixes for delivery paths. However, finding network
flows in this case is an NP-complete problem.

We update spill paths using a linear-time algorithm
that reduces, in the case where there are no mutu-
ally exclusive edges, to the algorithm described in

Section 4.1. When mutually exclusive edges do ex-
ist, the updating algorithm may fail to find existing
ways to reroute spill paths. In practice, such failure
usually does not prevent each operation from being
scheduled eventually. The updating algorithm is just
a depth-first search for an augmenting path, but one
that updates the flow during the search in order to
detect constraint violations.

5 Describing More Complex
Architectures

Typical architectures for which our compiler is to gen-
erate code are more complex than the toy architec-
ture of Figure 1. In this section, we mention a few
important issues that did not arise in that example.

Consider replacing the two registers regl and reg?2
of the toy datapath with n registers. Say using 2n
bits of the instruction to select registers for reading
or writing is unacceptable. Encoding the read-select
bits has no impact on scheduling; reading several reg-
isters simultaneously makes no sense anyway (there
being just one rbus). However, encoding the write-
select bits introduces a resource constraint because
writing the contents of acc into several registers si-
multaneously does make sense.

Such a file of n registers can be modeled using our
mutual exclusion mechanism. This is a good idea for
the k < n registers to which variables are assigned,
but for the other n — k registers, a different approach
suggests itself: using a single place node (a fat one)
that can hold n — k values. This approach saves com-
pilation time and space when n is large; it also allows
the useful possibility n = co. Moreover, it reduces
the use of mutual exclusion, improving the operation
of the spill path updating algorithm. Fat place nodes
are a very natural generalization for all algorithms of
concern.

A memory bank is a register file with an additional
feature: dynamically computed addresses. Cells of a
memory bank that hold simple variables and tempo-
rary results can be treated much like the registers of
a register file. Cells whose addresses are dynamically
computed, however, have no place in the place-time
graph. They raise the issue of aliasing, which is be-
yond the scope of this paper.

The machine description should not reflect tech-
nical details such as these. We supply register files
and memory banks as building blocks. We provide
convenient notation for associating side-effect depen-
dencies and simple resource constraints with micro-
operations. We also allow the specification of regis-
ter word lengths, but this last feature, which impacts

Page 8

both data routing and spill path management, is only
partly implemented.

6 Concluding Remarks

Lazy data routing is helpful for generating horizontal
code for architectures with unusual pipeline topolo-
gies. It can find seemingly suboptimal ways of chain-
ing functional units that, in the context of the sur-
rounding program, lead to better code. Its implemen-
tation is somewhat complex, but the reward for the
effort is a reduced need for other optimizations. The
technique is particularly useful when it is impractical
to customize the compiler to each particular pipeline
topology.

Lazy data routing can be used to do lazy constant
generation. When two uses of a constant appear close
together, a choice presents itself: The constant can
be generated once and used twice, or it can be gen-
erated twice. In general, the better choice can be
identified only during scheduling. To use lazy data
routing to make this decision, it is only necessary to
place the value in a fictitious register from which the
data router can fetch it as it sees fit. The problem
of choosing among many ways of generating the same
constant is solved in the same stroke.

The implementation of lazy data routing in the
presence of hot spots is complicated by the existence
of situations in which scheduling cannot continue.
Our spill path method efficiently steers the scheduler
around these dead ends. We have written a compiler
in Common Lisp that uses this technique and com-
piles roughly one line of code per second. Spill path
updating uses a significant fraction of the compilation
time, but surprisingly, not as much as the data-flow
cost estimation of Section 3.

Acknowledgements

This research is funded by DARPA contract number
N00039-87-C-0182.

References

[1] Jonathan Allen. Computer architecture for dig-
ital signal processing. Proceedings of the IEEE,
73(5):852-873, May 1985.

[2] Scott Davidson, David Landskov, Bruce D.
Shriver, and Patrick Wayne Mallett. Some exper-
iments in local microcode compaction for horizon-

tal machines. IFEE Transactions on Computers,
C-30(7):460-477, July 1981.

Joseph A. Fisher, John R. Ellis, John C. Rut-
tenberg, and Alexandru Nicolau. Parallel pro-
cessing: A smart compiler and a dumb machine.
In Proceedings of the ACM SIGPLAN ’8} Sym-
posium on Compiler Construction, pages 37-47,
June 1984.

Joseph A. Fisher, David Landskov, and Bruce D.
Shriver. Microcode compaction: Looking back-
ward and looking forward. In Proceedings of

the National Computer Conference, pages 95-102.
AFITPS, 1981.

Jan Rabaey, Stephen Pope, and Robert W.
Brodersen. An integrated automatic layout gener-
ation system for DSP circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits,
CAD-4(3):285-296, July 1985.

Ken Rimey and Paul N. Hilfinger. A com-
piler for application-specific signal processors. In
VLSI Signal Processing, 111, pages 341-351. IEEE
Press, November 1988.

Steven R. Vegdahl. Phase coupling and constant
generation in an optimizing microcode compiler.
In The 15th Annual Workshop on Microprogram-
ming, pages 125-133, 1982.

Page 9

